Es común que nos surjan dudas sobre si estamos desarrollando bien una suma (o diferencia) elevada a una potencia cualquiera.

El triángulo de Tartaglia es de gran utilidad en el cálculo de los coeficientes de los términos del desarrollo de potencias de un binomio.

La construcción de este triángulo es muy simple, basta con empezar con un 1, que es el vértice superior:

1

Para construir los demás "pisos" debemos sumar las dos cifras inmediatamente superiores

1 1

Seguimos sumando:

1

1

1 2 1

Profession

Seguimos sumando:

1

1

1 2 1

1 3 3 1

Seguimos sumando:

1

1

1 2 1

1 3 3 1

1 4 6 4 1

Seguimos sumando:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Pero los números que aparecen en este triángulo son solo los coeficientes de los sumandos

Pero los números que aparecen en este triángulo son solo los coeficientes de los sumandos

Veamos 1 cómo tenemos 1 como que usarlos 1 2

1 3 3 1

1 4 6 4 1

Veamos 1 cómo tenemos 1 como que usarlos 1 2

1 3 3 1

1 4 6 4 1

1b²

Cada término tiene el mismo grado:

Los términos de (a+b)^o tienen grado 0. Los términos de (a+b)¹ tienen grado 1. Los términos de (a+b)² tienen grado 2.

El primer término del desarrollo solo está formado por el primer término del binomio.

A partir de aquí vamos restando una unidad al exponente del primer término y sumando una unidad al exponente del segundo término:

$$(a+b)^3$$
 $1a^3$ $3a^{3-1}b^1$ $3a^{2-1}b^{1+1}$ $1a^{1-1}b^{2+1}$

$$(a+b)^3$$
 1a³ 3a²b 3ab² 1b³

$$(a+b)^4$$
 1a⁴ 4a³b 6a²b² 4ab³ 1b⁴

Profession